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Abstract

We introduce and study a system of Seiberg–Witten equations. These arer copies of the usual
Seiberg–Witten equations coupled to each other involvingr connections onr SpinC structures as well
asr positive spinors and are Abelian generalizations of the Seiberg–Witten equations. Forr = 2, we
show that the moduli space of solutions is a compact, orientable and smooth manifold. For minimal
surfaces of general type, we are able to determine the basic classes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Seiberg–Witten (SW) equations are made out of sections of a SpinC structure and
a connection on a line bundle[17]. The rather difficult theory of Donaldson requires a
vector bundle of rank 2. Even more complicated are the non-Abelian monopole theories
of Pidstragach (see[7]), which is believed to bridge the gap between the SW and Donald-
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son invariants, and of Labastida and Mariño [15] which generalize both. A survey of the
invariants can be found in[7]. The aim of this paper is to introduce a rank 2 theory which
is nevertheless Abelian.

The equations that we introduce can be considered in a slightly broader context. LetE be
rankr vector bundle on a compact closed four-manifoldX. Fix a Riemannian structure onX,
(g,X) and denote the self-dual 2-forms byΩ2+(X). Fix also a SpinC structure onX. Letψ be a
section ofW+ = SpinC(X) ⊗ E. Forφ andλ inW+, letq : W+ ×W+ → Ω2+(X) ⊗ EndE
be the trace free part of the endomorphismθ �→ 〈θ, φ〉 λ. LetΦ be a section of End (EndE).
The equations of interest are

F+
A +Φ · q(ψ,ψ) = 0,

D/ Γ+Aψ = 0,

dAΦ = 0

(1.1)

whereA is a connection onE,Γ the Levi–Cevita connection on SpinC anddA is the covariant
derivative on End (EndE) with the connection induced from that onE.

One possible solution to these equations would haveΦ equal to a scalar times the identity
endomorphism. In this case, on a Kähler manifold, the equations become (up to a perturba-
tion) equivalent to a set of equations discussed in[4]. Those equations are shown to have a
notion of stability.

If Φ is not proportional to the identity endomorphism then, to have a solution to the
last equation in(1.1), the bundles must split. The equations that we consider in this paper
correspond to such a situation. The equations thus obtained are described in detail in the
next section but we briefly summarise them here. In this case, we have SpinC(X) ⊗ E =
⊕i(L

Ei1
1 ⊗ · · · ⊗ LEirr ⊗ S+) = ⊕i(Li ⊗ S+), and neither the spin bundleS+ nor the line

bundlesLi need exist. However,L⊗2
i are honest line bundles and theEij are integers so

that the combinationsLi ⊗ S+ are bundles. LetMi be sections of the bundlesS+ ⊗ Li, 2Ai
be connections on the line bundlesL⊗2

i and 2Ai be connections onL⊗2
i . The system ofr

Seiberg–Witten equations are

F+
Ai

+∑j D
ij q(Mj,Mj) = 0

D/ (Ai)Mi = 0,
(1.2)

with Dij a non-singular and not necessarily integral matrix. The choice ofΦ in (1.1)fixes
the matrixD.

The value ofr is called the rank of the system of equations. We will often refer to the
system ofr Seiberg–Witten equations as the rankr SW equations.

The equations under consideration were proposed in the context of studying the
Rozansky–Witten invariants on a three-manifold,Y [2]. Higher rank equations of this type
should correspond to higher rank Rozansky–Witten invariants, that is to higher order LMO
or Casson invariants[8]. One would expect that considering these equations onX = Y × S1

one would get something like the Euler characteristic of a suitable Floer theory. This was
part of our motivation for studying the higher rank case on a four-manifold.

Here is a brief summary of the contents of the text. Along the way, we highlight where
new ingredients, beyond those required for the rank 1 SW, are used. In Section2, the
equations are introduced. There is also a discussion on the form ofΦ that we consider
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as well as a comment on what happens to the equations under a conformal change of the
metric. In Section3, the virtual dimension of the moduli space is computed with the help
of the index theorem and basic classes are defined. The question of reducible points in the
moduli space is also addressed there. All of this is standard.

The compactness of the space of solutions is established in Section4 following the
approach of Witten[17]. However, the discussion here to obtain a priori bounds on the
curvature 2-forms and on the sections (and their derivatives) is somewhat more involved. In
the following section, the perturbed equations are introduced and we mostly follow Chapter
6 of [12] to establish that the parameterized moduli space, forb+

2 (X) > 1, is compact
and smooth and that it is essentially independent of the metric and of generic perturba-
tions.

With the general picture in hand we make a small side excursion in Section6 to show,
by way of examples, why we have made such a particular choice for the form ofΦ. In this
section, we make use of the fact that, by specializing, one can have a theory of ranks and
with N sections. For example, fors < N, taker = N in the equations and setr − s line
bundlesLa to be trivial with connectionsAa taken to be zero and also setDai = 0 with
a = s+ 1, . . . , r.

In Section7, we specialize to K̈ahler manifolds. One can mimic to some extent the
work done on the rank 1 equations. There is a moment map description of the moduli space,
however, we have not been able to establish that the bundles are ‘stable’ in some appropriate
sense. Instead, one uses a trick to establish that given a holomorphic section on the Kähler
manifold (ω, X) one obtains a solution to the equations on (e2ρω, X) for some conformal
factorρ seeProposition 7.8. This is a rather weak result but it nevertheless allows us to
prove that the basic classes of the rank 2 SW equations on a minimal surface of general
type are a subset of the Cartesian product of the allowed rank 1 SW classes, i.e. subsets of
the four classes (±KX,±KX), seeProposition 7.11.

Here is a brief summary of what is not included in the text. We do not analyze the situation
for the equations on other types of manifolds. For example, neither general symplectic
manifolds nor hermitian non-K̈ahler manifolds are considered. The techniques introduced
by Taubes[16] and by Biquard[1] presumably apply in the present setting as well. We do
not define rankr SW invariants, though they can be defined in the natural way, as we do
not use them.

Bounds on the sections and curvatures, though not presented here, can also be obtained
when the rank is greater than 2. This can be found in the thesis[11].

A rather serious deficiency is that there are no applications to topology.
In the text, we will sometimes refer to a Fierz identity. That is an identity on the tensor

product of the Clifford algebra and it reads

4Iαβ Iρσ = Iασ Iρβ +
∑
µ

((γµ)ασ(γµ)ρβ − (γµγ5)ασ(γµγ5)ρβ) + (γ5)ασ(γ5)ρβ

−
∑
µν

1

2
(σµν)ασ(σµν)ρβ (1.3)
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1.1. Note added

After the completion of this manuscript, two references were brought to our attention.
In [9] quiver theories which correspond to special cases of the rankr SW equations with
Eij = 0, ±1 have been studied. The conditions for stability of vortex type equations on a
Kähler surface have been established in[5]. The system of equations we study should be
an example of those in[5] but we have not been able to show this. However, if true, then
one would have stability in hand and one could forgo the analysis of Section7 and certainly
strengthen the results there.

1.2. Acknowledgements

This work grew out of a collaboration with M. Blau to whom we are greatly indebted. It
is a pleasure to thank both M.S. Narasimhan and T. Ramadas for many useful discussions.
We would like to thank O. Garcı́a-Prada for his remarks and also for bringing[9,5] to our
attention. We also thank the referee for helping us improve the presentation. F. Massamba
would like to thank the Abdus Salam ICTP for a fellowship.

2. The equations

We fix an oriented, compact, Riemannian four-manifoldX. We start withr, possibly
non-existent, line bundlesLi, i = 1, . . . , r, on X, so thatS+ ⊗ Li are SpinC structures on
X for all i. However, the SpinC structures of interest are

Li ⊗ S+ = L
Ei1
1 ⊗ · · · ⊗ LEirr ⊗ S+.

The matrixEij may well be the identity matrix, though in general we only demand that
detE �= 0, that the entries be integers and they are such that theL⊗2

i are honest line bundles.
Summing over all tuples (L1, . . . , Lr) for a general matrixE means that one does not sum
over all possible tuples of SpinC structures onX. However, forE ∈ SL(r,Z) then one does
sum over all such tuples of SpinC structures.

The model we have of the mapTX → Hom(S+, S−) (which is well defined even ifS±
are not) is

(x1, x2, x3, x4) �→
(
x3 + √−1x4 x1 − √−1x2

x1 + √−1x2 −x3 + √−1x4

)
,

and this fixes our conventions for the Dirac matrices.
Let 2Ai be connections on the line bundlesL⊗2

i , with an abuse of language we will say
that theAi are connections onLi. The connection forms are

√−1Ai so that theAi are real.
Denote byMi charged positive chirality spinors, that is sections of the bundlesS+ ⊗ Li.
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The rankr Seiberg–Witten equations are

F+
Ai

+
∑
j

Dij q(Mj,Mj) = 0 (2.1)

D/ (Ai)Mi = 0. (2.2)

where, in local coordinates,

qµν(Mi,Mi) =
√−1

2

(
M̄iσµνMi

)

andAi =∑j EijAj is a connection onLi. The mapq is the same one as in the introduction
but written in local coordinates.

Some comments are in order.

Remark 2.1. The two matricesE andD that appear in the equations are related. That relation
is dictated by wishing to emulate the use of the Weitzenbock trick to get a vanishing theorem
as in the case of the rank 1 equations. The condition on the matrices is thatD−1 · E be a
symmetric positive definite matrix (See Section4). Infact, the matrixD need not have integer
entries.

Remark 2.2. Though not strictly necessary we impose the further condition thatD−1 have
integral entries. With this assumption in hand we can write(2.1)as

F+
B = −q(M,M) (2.3)

with B = D−1 · A, and so thatBi is a connection onL
⊗D−1

i1
1 ⊗ · · · ⊗ L

⊗D−1
ir

r .

Note that conformal classes of a metric onX yield related equations. Denote the Dirac
operator and sections on (g,X) byD/ andMi (as above) and those on (eρg,X) byD/ ρ and
M
ρ
i . The rankr SW equations on (eρg,X) are

F+
B = −q(Mρ,Mρ, ), D/ (Ai)ρM

ρ
i = 0.

Note that the Hodge star operator acting on 2-forms is conformal invariant and so the+
superscript is the same for (g,X) and (e2ρg,X).

Proposition 2.3. Let the rank r SW equations for the Riemannian manifold (g,X) be as
above. The equations for (e2ρg,X) are

F+
B = −e−ρq(M,M), D/ (Ai)Mi = 0,

with Mρ
i = e−3ρ/2Mi.
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Proof. The relationship betweenMρ
i andMi follows from the scaling dimension of the

spinors. That the first equation holds is obvious. That the second holds follows from the
fact that under a conformal scaling the Dirac operator behaves as

D/ ρ = e−5ρ/2D/ e3ρ/2. �

Our aim is to study the space of solutions of (a perturbed version of) the rank 2 equations.
We will sum over allLi, so that we do not need to specify which SpinC structures we are
dealing with at the outset.

3. The moduli space and the basic classes

Let Gi denote the gauge group of bundle automorphisms ofLi. The space of gauge
transformations,G, is the product of these spaces of bundle automorphisms,

G = G1 × · · · × Gr.

Each of theGi is a copy of Map(X,U(1)) and their complexifications are copies of
Map(X,C∗). The space of solutions to the rankr SW equations is left invariant under
G.

By moduli space, we mean the space of solutions to the rankr SW equations mod-
ulo gauge transformations. Let (Ai,Mi) be a solution to the rankr equations. We want
to use an index calculation to determine the dimension,d, of the moduli space at
that point. For this we need only linearize the equations about the solution. The lin-
earized equations, however, are simplyr copies of linearized rank 1 equations, with bun-
dlesLi.

The operator that arises on linearizing the equation for the self-dual curvature and the
gauge fixing condition is

T0 = d + d∗ : Ω1(X,R) → Ω0(X,R) ⊕Ω2
+(X,R). (3.1)

The linearization of the Dirac equation for a section ofS+ ⊗ L, on dropping terms of order
zero, is

T1(L) = D/ (A) : Γ (S+ ⊗ L) → Γ (S− ⊗ L). (3.2)

The index ofT0 is d0 = −(χ+ τ)/2 and that ofT1(L) is d1(L) = −τ/4 + c1(L)2. The
virtual dimension of a given moduli space of rankr with line bundlesLi andn sectionsMa

is

d(L1, . . . , Lr) = r d0 +
n∑
a=1

d1(La)

= −2rχ+ (2r + n)σ

4
+
∑
i, j

Cijc1(Li)c1(Lj), (3.3)

with Cij =∑a Eai · Eaj, that isC = ET · E.
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The usual rank 1 SW moduli space with one section of charge one has virtual dimension

d(L) = −2χ+ 3τ

4
+ c1(L)2.

We have

Proposition 3.1. The virtual dimension of the rank 2 equations is

d(L1, L2) = 2d0 + d1(L1) + d1(L2)

= −2χ+ 3τ

2
+ (ET · E)ijc1(Li) c1(Lj). (3.4)

Definition 3.2. The basic classes are

x = (x1, . . . , xr) = (−c1(L⊗2
1 ), . . . ,−c1(L⊗2

r )).

Note that in the special case thatEij = δij the equations decouple and the moduli spaces
have virtual dimensionsd0 + di separately for eachi. In that case, the basic invariants are
essentiallyr-tuples of the usual SW basic classes.

The equations have a number of symmetries. Apart from the gauge symmetry which was
discussed above there is also invariance under

Mi → M̄i, Ai → −Ai (3.5)

for all i simultaneously. The transformation on the connections really corresponds to ex-
changing the line bundlesLi with L−1

i . Consequently, we have

Proposition 3.3. If (x1, . . . , xr) is a basic class then so too is (−x1, . . . ,−xr).

A solution to the rankr SW equations would be reducible, if one or more of the sections
is zero. Reducibility arises since then constant gauge transformations do not act. Suppose
that one of the sections is zero, sayM1. Then,(2.3) reads

F+(B1) = 0

that is B1 is an Abelian instanton. Ifb+
2 (X) ≥ 1 then, generically, the intersection of

H2(X,Z) with H2−(X,R) is the zero class. This means that the connectionB1 is flat. This
possibility will not arise with the introduction of a perturbation to the equations as given in
Section5.

4. Weitzenbock formulae, a priori bounds and compactness

In this section, we will obtain bounds onFi± and on|Mi| which will allow us to con-
clude that the moduli space of solutions is compact. Then, we give our prescription for the
orientation of the moduli space.
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We begin with a squaring argument. Set

siµν = Fi+µν + i
2

∑2
j=1D

ij (M̄jσµνMj)

ki = D/ (EijAj)Mi,

and, for a solution to the SW equations we must have∫
X

d4x
√
g

2∑
i=1

(
1

2
Gij sj · si + |ki|2

)
= 0, (4.1)

with G = ET ·D−1 a symmetric and positive definite matrix.
Using the fact that,

D/ (EijA
j)2Mi = DµDµMi + i

2

2∑
j=1

Eij F
j
µν · σµν Mi − 1

4
RMi, (4.2)

we find that(4.1)becomes∫
X

d4x
√
g

2∑
i=1

(
1

2
Gijsj · si + |ki|2

)

=
∫
X

d4x
√
g

2∑
i,j=1

(
1

2
GijFi+Fj+ − 1

8

∑
µ, ν

M̄iσµνMi BijM̄jσ
µνMj + δij|DMi|2

+1

4
Rδij|Mi|2 1

8

∑
µ, ν

)
= 0, (4.3)

with B = DT · ET = DT ·G ·D a positive definite symmetric matrix. At this point, the
choice of the matrixG becomes evident. It was chosen, so that the ‘mixed term’F+ ·
M̄σM · E would drop out of the equations.

A small calculation using a Fierz identity for the gamma matrices(1.3)allows to write

− 1

8

2∑
j,k=1

∑
µ, ν

M̄jσµνMj BjkM̄kσ
µνMk = 1

2

2∑
j,k=1

(2|M̄jMk|2 − |Mj|2|Mk|2)Bjk.

(4.4)

It is easy to check that

(2|M̄1M2|2 − |M1|2|M2|2)B12 ≤ |B12| |M1|2|M2|2,

so that

−1

8

2∑
j,k=1

∑
µ, ν

M̄jσµνMj BjkM̄kσ
µνMk ≥ 1

2

(√
B11|M1|2 − √

B22|M2|2
)2

+ (√B11B22 − |B12|
) |M1|2|M2|2
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where
√
Bij always represents the positive root. We can cast(4.1) in the form of an

inequality,∫
X

d4x
√
g


1

2

2∑
i,j=1

GijF
i+Fj+ +

2∑
i=1

|DMi|2 + 1

2

(√
B11|M1|2 − √

B22|M2|2
)2

+ (√B11B22 − |B12|
) |M1|2|M2|2 + 1

4
R

2∑
i=1

|Mi|2

 ≤ 0. (4.5)

One immediate consequence of(4.5) is that, just as for the usual SW invariants, there are
no solutions apart from the trivial ones ifR is non-negative.

We use this equation to prove that the moduli space of interest is compact. In order to
do so it useful to re-write it once more. Add

∫
d4x

√
gR2/32λ to both sides of(4.5)with λ

a constant. Then, we have

∫
X

d4x
√
g


1

2

2∑
i,j=1

GijF
i+Fj++

2∑
i=1

|DMi|2 + 1

2

(√
Bλ11|M1|2−

√
Bλ22|M2|2

)2

+
(√

Bλ11B
λ
22 − |B12| − λ

)
|M1|2|M2|2 + 1

2λ


λ(|M1|2 + |M2|2) + R

4




2



≤ 1

32λ

∫
d4x

√
gR2 (4.6)

whereBλii = Bii − λ (no sum). This equation can be checked easily by expanding everything
out. The advantage in expressing the inequality in this way is that if one takes

0< λ ≤ detB

2|B12| + B11 + B22

then every term in the integrand is positive semi-definite. The only thing we need to check
is that√

Bλ11B
λ
22 ≥ |B12| + λ.

Squaring this expression, we are led to the restriction onλ above.
Consequently, each term in the integrand is separately bounded by

∫
d4x

√
gR2/32λ. We

can now see that the sectionsMi have bounded norm since∫
X

d4x
√
g

1

2
(Bλ11|M1|4 + Bλ22|M2|4)=

∫
X

d4x
√
g

1

2

(√
Bλ11|M1|2−

√
Bλ22|M2|2

)2

+
∫
X

d4x
√
g

√
Bλ11B

λ
22|M1|2|M2|2


1+

√
Bλ11B

λ
22√

Bλ11B
λ
22 − |B12|−λ


 1

32λ

∫
d4x

√
gR2,

(4.7)
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(with λ less than its allowed maximal value). Hence, the norms of the sections and their
derivatives are bounded.

To complete the discussion, we want to show that the basic classes are also bounded. We
have, for eachLi, the bound

∫
X

d4x
√
g

1

2

2∑
i,j=1

GijF
i+Fj+ ≤ 2|B12| + B11 + B22

32 detB

∫
d4x

√
gR2,

while the dimension formula gives us a bound on|Fi−|. To obtain this bound, we first use
the Cauchy–Schwarz inequality to deduce that

C12
∫
X

d4x
√
gF1

−F
2
− ≥ −|C12| ‖F1−‖ ‖F2−‖,

and

C12
∫
X

d4x
√
gF1

+F
2
+ ≤ |C12| ‖F1+‖ ‖F2+‖

where for any formω its norm is

‖ω‖ =
(∫

X

d4x|ω|2
)1/2

.

The dimension formula reads

Cij c1(Li)c1(Lj)[X] ≥ 1

2
(2χ+ 3τ),

that is,

C11‖F1−‖2 + C22‖F2−‖2 − 2|C12| ‖F1−‖ ‖F2−‖ ≤ C11‖F1+‖2 + C22‖F2+‖2

+2|C12| ‖F1+‖ ‖F2+‖ − 2π2 (2χ+ 3τ) . (4.8)

Denote the right-hand side of the inequality(4.8)byS (it is bounded by our previous results),
and note that we can express the inequality as

(
√
C11‖F1−‖ −

√
C22‖F2−‖)2 + 2(

√
C11C22 − |C12|)‖F1−‖ ‖F2−‖ ≤ S (4.9)

The left-hand side is a sum of positive terms, so in particular we haveS ≥ 0 and

(
√
C11‖F1−‖ −

√
C22‖F2−‖)2 ≤ S, 2(

√
C11C22 − |C12|)‖F1−‖ ‖F2−‖ ≤ S.

It is now straightforward to deduce that

‖F1−‖2 ≤ C−1
11 ·H · S, ‖F2−‖2 ≤ C−1

22 ·H · S, (4.10)



F. Massamba, G. Thompson / Journal of Geometry and Physics 56 (2006) 643–665 653

with

H = 1 +
√
C11C22√

C11C22 − |C12|
.

We have therefore the following:

Proposition 4.1. The L2 norms of Mi,DAiMi, F
−
Ai and F+

Ai are bounded.

SinceX is compact we also get pointwise norms on the sections and the curvatures. One
can now follow the discussion in Chapter 5.3 of[12] to establish that the moduli space is
compact.

Proposition 4.2. The moduli space of rank 2 Seiberg–Witten equations is compact.

The moduli space of solutions can be oriented in the same way as for the rank 1 moduli
space[17]. An orientation at a point in the solution space is the same thing as the trivialization
of the determinant of the linearization operator; direct sums ofT0 andT1(Li). We do not need
to trivialize the determinant line ofT1(Li) as each of those is naturally trivial as explained
by Witten. To trivialize the determinant ofT0 one fixes on an orientation of H1(X,R) ⊕
H2+(X,R). Having picked such an orientation we have then trivialized (detT0)⊗r.

Proposition 4.3. The moduli space of rank 2 Seiberg–Witten equations is orientable.

5. Perturbed equations

The moduli space of solutions to the rank 2 SW equations may not be smooth. Further-
more, the expected dimension of the moduli space may not be the actual dimension. To get
around these problems, one perturbes the equations. We perturb as for the rank 1 equations,
namely the first SW equation,(2.3)becomes

F+(B) = −q(M,M) + h (5.1)

with h = (h1, h2)T two generic realC∞ self-dual 2-forms onX.
We denote the moduli space of perturbed solutions, modulo the action of the gauge group

G, byM(L,h).

Proposition 5.1. For a fixed metric and a generic perturbation, the perturbed equations
do not allow for reducible solutions if b+

2 (X) > 0.

Proof. A reducible solution requires one of the sections to be zero. Without loss of gener-
ality letM1 = 0. We have thatF+(B1) = h1. However, the harmonic part ofF (B1)/2π is
an integral class so if the harmonic part ofh1 does not lie on the integral lattice then there
are no solutions. �
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One can now mimic the discussion on the parametrized moduli space of Chapter 6
in [12]. We summarize that discussion (references in this paragraph are to[12]). Fix a
SpinC structure. For the rank 1 SW equations (withE = D = 1), one introduces a map
F : A×Ω2+(X) → Ω2+(X) ⊕ S− ⊗ L given by

F (A,M, h) = (F+
A + q(M,M) − h,D/ AM)

whereA is the space of connections onL Cartesian product with the space of sections of
S+ ⊗ L. Suitable Sobolev norms being given onA×Ω2+(X). For the sectionM �= 0, one
shows that the differential of the mapDF is onto, Lemma 6.2.1. Proposition 6.2.2 then
establishes that the parameterized (byh) moduli space consisting of all irreducible pairs
of ([A,M], h) for which the perturbed SW equations are satisfied is a smooth manifold.
This manifold is a fibre bundle over the parameter spaceΩ2+(X,R) with fibreM∗(L, h) the
moduli space of irreducible solutions to the rank 1 SW equations modulo gauge equivalence
for fixed perturbation. The differential of the projection mapping is Fredholm and its index
is

4d(L) = c1(L⊗2)2 − 2χ(X) − 3τ(X).

These results follow immediately from Lemma 6.2.1. The role of Corollary 6.2.3 is to
establish that the fibre for a generic perturbation is smooth. This too is straightforward to
establish, with the main ingredient being an application of the Sard–Smale theorem.

We only need, therefore, to generalize Lemma 6.2.1 of[12] to the rank 2 case. The proof
of the following proposition follows closely that given for the rank 1 equations in[12] and so
is not given in detail. LetA denote the space of connections onL1 ⊗ L2 Cartesian product
with the space of sections ofS+ ⊗ (L1 ⊕ L2).

Proposition 5.2. Let F : A×Ω2+(X) ×Ω2+(X) → Ω2+(X) ⊕Ω2+(X) ⊕ S−(L1 ⊕ L2) be
given by

F (A,M,h) = (F+
B + q(M,M) − h,D/ AM). (5.2)

At any point (A,M,h) for which F (A,M,h) = 0 and M = (M1 �= 0,M2 �= 0) the differ-
ential of the map DF is onto.

Proof. Let (a,m,k) be tangent vectors, then

DF (a,m,k) = (d+b + q(m,M) + q(M,m) + k,D/ Am + a/M),

with b = D−1 · E−1a. This is onto on the first factor, as can be seen by varyingk. So,
our task is to keep the first factor fixed and to show that thenDF is onto on the second
factor. Since the Dirac operator is invertible outside the zero mode set we have thatDF is
onto in the second factor except possibly for modes that satisfy the Dirac equation, that is,
those in kernel of the Dirac operatorD/ A on S− ⊗ L. Let Ni ∈ S− ⊗ Li be in the kernel
of the Dirac operator. Suppose, furthermore, that theNi areL2 orthogonal to the image
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of the map

G : (a,m) �→ D/ Am + a/M.

We take theNi to be non-zero (ifNi, for somei, is zero then it is in the image ofG).
Since the Dirac operator is elliptic this means that theNi do not vanish on any open subset.
Pick a small enough open ballU so that theN andM are non-zero there. We have a map
(S+ ⊗ L) ⊗ (S− ⊗ L−1) → Ω1(X,C) given by Clifford multiplication,

(M,N) �→ N · γµ ·M dxµ.

Consider the vectorsv given by

viµ = NiγµMi,

and seta = Rev. Note that both Imv and Rev are non-zero onU. Consequently,

Re< Ni, a/iMi >= Re
∫
X

Nia/iMi =
∫
X

|ai|2 > 0.

But this means that theNi are notL2 orthogonal toG(ai,0). This is a contradiction and so
the orthogonal compliment to the image ofDF is trivial and hence theNi are in the image
of DF and the map is onto. �

It remains to establish that the moduli spaceM(L,h) for any h is compact. A small
variation on the arguments used in Section4 give us the required,

Proposition 5.3. For solutions to the perturbed rank 2 SW equations the L2 norms of Mi,
DAiMi, F

−
Ai and F+

Ai are bounded.

Proof. For the perturbed Eq.(4.1)becomes

∫
X

d4x
√
g

2∑
i=1

(
1

2
Gijs̄j · si + |ki|2

)
=
∫
X

d4x
√
g

2∑
i=1

1

2
Gij hj · hi.

Consequently, following the steps after(4.1), we are led to the same equations as before
except that one should make the replacement

1

32λ

∫
X

√
gR2 → 1

32λ

∫
X

√
gR2 +

∫
X

d4x
√
g

2∑
i=1

1

2
Gij hj · hi,

and the bounds obtained are those of Section4 with this substitution understood.�

Putting all the pieces together, we have:
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Proposition 5.4. The moduli spaceM(L,h) of solutions to the rank 2 SW equations on X
with b+

2 (X) > 0 for a generic value of h (avoiding the reducible connections) is a smooth
compact manifold.

One can also show along the lines of the proof of Theorem 6.5.1 of[12]:

Proposition 5.5. Let X be a closed compact smooth four-manifold with b+
2 (X) > 1. Let

gt be a smooth path of metrics connecting g0 and g1 and let ht be a smooth and generic
path of self-dual 2-forms connecting h0 and h1. Suppose that for (g0,h0) and for (g1,h1)
Proposition 5.2 holds. The parametrized moduli space M(L1, L2,ht) of solutions to the
parameterized equations

F
+t

B = q(M,M) + ht , D/ tAM = 0,

where +t means the Hodge star operator for the metric gt and D/ tA means the Levi–Cevita
part of the connection is also that associated to gt . Then,M(L1, L2,ht) consists only of
irreducible points and is a smooth compact manifold whose boundary is the disjoint union
of the moduli spaces associated to (g0,h0) and (g1,h1).

6. Some examples

In order to see the need for some of the conditions imposed in the rank 2 theory, we
discuss various possibilities in rank 1.

6.1. r = 1 and two sections

Lets start with the situation of two sectionsM1 ∈ Γ (S+ ⊗ L⊗q1) andM2 ∈ Γ (S+ ⊗
L⊗q2), with theqi odd. We take the equations to be given by(2.1) and (2.2)with E11 = q1,
E21 = q2 andE12 = E22 = 0. We setD = ET, so thatB11 = q2

1,B12 = q1q2 andB22 = q2
2

and detB = 0. The virtual dimension of the moduli space is

d = d0 + d1(L⊗q1) + d1(L⊗q2) = −χ+ 2τ

2
+ (q2

1 + q2
2)c1(L)2.

(4.5), with A2 = 0, is the appropriate inequality in the present situation,

∫
X

d4x
√
g

(
1

2
|F+|2 +

2∑
i=1

|D||Mi|2 + 1

2
(|q1||M1|2 − |q2||M2|2)2

+1

4
R

2∑
i=1

|Mi|2
)

≤ 0.



F. Massamba, G. Thompson / Journal of Geometry and Physics 56 (2006) 643–665 657

Unfortunately, one sees directly that along the line|q1||M1|2 = |q2||M2|2 we cannot deduce
any bounds. We, can do a little better and work with the equality,∫

X

d4x
√
g

(
1

2

2∑
i=1

|Fi+|2 +
2∑
i=1

|DMi|2 + 1

2
(|q1||M1|2 − |q2||M2|2)2

+2|q1q2||M̄1M2|2 + 1

4
R

2∑
i=1

|Mi|2
)

= 0

and now it becomes transparent that problems of non-compactness come from the region
where |q1||M1|2 ≈ |q2||M2|2 and |M̄1 ·M2| ≈ 0 as the norms of both sections become
large. Of course, one needs a more explicit understanding of a given set of solutions
to know if such situations arise, which in turn means that we do not have a general
compactness theorem available. However, one thing that we do learn from this exam-
ple is that the success in establishing compactness of the moduli space in the rank 2
case is rather non-trivial.1 Equations of this type arise in the context of the twisted
version N = 2 supersymmetricSU(2) gauge theory withNf = 2,3 massless funda-
mental hyper-multiplets[13] (though we disagree with the vanishing theorem presented
there).

These equations have been studied in the mathematics literature[6], with q1 = q2 = 1.
More generally the authors consider a rank 1 theory withN sections and all charges unity.
Even though the moduli space is non-compact they show that there is a natural compactifi-
cation. Unfortunately, the dimension of this moduli space can never be zero. Notice that, in
the current setting, the SW equations are invariant underMi → Uij Mj with U ∈ SU(N).
This SU(N) symmetry is a global ‘flavour’ symmetry and has nothing to do with the
group of gauge transformations. This means that there is a non-trivial action ofSU(N)
on the moduli space. However, by allowing for chargesqi such thatqi �= qj wheni �= j,
there is no such symmetry, and it appears that the arguments presented in[6] still go
through.

6.2. r = 1 and one section

Another possible set of equations is to consider one sectionM ∈ Γ (S+ ⊗ L⊗q) with q
odd. The dimension in this case is

d = d0 + d1(L⊗q) = −2χ+ 3τ

4
+ q2 c1(L)2.

We may define basic classes to bey = −c1(L2) which satisfyq2y2 = 2χ+ 3τ. Denote the
corresponding invariant byny. In the usual SW equations, one considers a line bundleL′
and for eachx = −2c1(L′) which obeysx2 = 2χ+ 3τ one associates an integernx which,
under certain conditions, is a topological invariant. The total of the available topological

1 The lack of compactness persists if one has equations with more sections than connections regardless of the
rank.
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invariants is obtained on running over all possible line bundles. WhenL′ = L⊗q the moduli
spaces and the invariants agree,nx = ny.

What we have learnt is that the invariants that are available for a monopole with a
higher charge are a subset of those of charge one. There are two cases. For manifolds with
2χ+ 3τ �= 0, one may choseq large enough so that there are no basic classes at all. This
means that in this situation one may be able to ‘fine tune’ so that, by an appropriate choice
of q, only a small subset of basic classes will arise. For manifolds with 2χ+ 3τ = 0, q
plays no role in the dimension formula. It would be nice to find a way to use this mismatch
in the dependence onq to learn something about topology.

6.3. r = 2 and one section

For our last example, we will consider in this section is that of rank 2 but with just one
sectionM ∈ Γ (S+ ⊗ L

⊗q1
1 ⊗ L

⊗q2
2 ). We haveE11 = q1, E12 = q2 andE21 = E22 = 0,

and again we takeD = ET then the only non-zero component ofB is B11 = q2
1 + q2

2.
Note thatq2F

1+ − q1F
2+ = 0 or, put another way,q2A1 − q1A2 is a self-dual Abelian

instanton. However, as discussed previously, by the perturbation of the equations there
are no solutions to the equations at all forb+

2 (X) > 0. So, we learn that we should have
n > r.

Putting together the various pieces from these examples, we see that in fact the interesting
case comes precisely when the rankr is equal to the number of sectionsn.

7. Kähler manifolds

If X is Kähler one has decompositionsS+ ⊗ Li = (K1/2
X ⊗ Li) ⊕ (K−1/2

X ⊗ Li) where,

as before, neitherK±1/2
X norLi necessarily exist. Denote the components ofMi inK

1/2
X ⊗ Li

by αi and those inK−1/2
X ⊗ Li by

√−1 β̄i. The equations become

F
(2,0)
Bi = αi βi

ω ∧ FBi = 1
2ω

2(|αi|2 − |βi|2)

∂̄Aiαi = −i∂̄∗Ai β̄i
(7.1)

The holomorphic description of this setting is as follows. First recall that theBi are con-

nections on the bundlesLi = L
D−1
i1

1 ⊗ L
D−1
i2

2 . The degree of a line bundleL is taken to
be

deg (L) =
∫
X

c1(L) ∧ ω. (7.2)

Proposition 7.1. Let (Ai,Mi) be a solution to the rank 2 SW equations with Mi =
(αi,

√−1 β̄i). For some i, if the degree of Li is ≤0 then βi = 0 and if the degree of Li
is ≥0 then αi = 0. Furthermore, the Bi induce a holomorphic structure on Li and with re-
spect to the induced holomorphic structures the sections αi and βi are holomorphic sections
of K1/2

X ⊗ Li and K1/2
X ⊗ L−1

i , respectively.
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Proof. The proof is analogous to the argument given by Witten for the rank 1 equations.
The formula(4.3)with present notation and conditions is invariant underAi → Ai, αi →
−αi andβi → βi performed fori = 1 and 2 simultaneously (this becomes rather more
transparent on taking(4.4)into account). But this means that bothF (2,0)

Bi = αi βi andF (2,0)
Bi =

−αi βi are simultaneously zeros of(4.3) that is, if (Bi, αi, βi) is a solution of the rank 2
equations then so too is (Bi,−αi, βi). Consequently, the first equation in(7.1)becomes,

0 = F
(2,0)
Bi = αi βi, (7.3)

which means that the line bundlesLi are holomorphic and that at least one ofαi andβi is
zero for eachi. Notice that by linearity the line bundlesLi andLi are also holomorphic.
By the second equation in(7.1)we see that the degree ofLi and the vanishing of eitherαi
or βi is as stated in the proposition. Lastly, we see that by the last equation in(7.1)that the
sections are indeed holomorphic.�

To complete the holomorphic description of the moduli space of solutions, we interpret
the second equation of(7.1)as a moment map for the group of gauge transformations. On
the space of connectionsAi introduce the symplectic form

Ω(δ1A, δ2A) =
∑
i,j

∫
X

Gij ω ∧ δ1Ai ∧ δ2Aj. (7.4)

Suppose that we are in the situation where both of theβi = 0. On the space of sections
(α1, α2) of K1/2

X ⊗ (L1 ⊕ L2) there is a symplectic structure

Ω(δ1α, δ2α) = −√−1
∑
i

∫
X

ω2

2
(δ1ᾱi δ2αi − δ2ᾱi δ1αi) (7.5)

The space of connections and sections (Ai, αi) can be interpreted as a symplectic manifold
with symplectic form given by(7.4) and (7.5). Set,

µi ω
2 = ET

ij ω(FBj + ω ᾱjαj) = ω(GijFAj + ET
ij ᾱjαj ω) (7.6)

which is the moment map for theU(1) × U(1) gauge transformations. Morally, therefore,
the space of solutions is the space of holomorphic sections modulo the induced action of the
group of complex gauge transformationsGC1 × GC2 . Hence, in the case that deg (Li) < 0 for
i = 1 and 2 one expects that the moduli space of solutions is made up of two pairs, (Li, αi),
of a line bundle with a given hermitian structure and a non-zero holomorphic section of
K1/2 ⊗ Li defined up to constant scaling.

Remark 7.2. When the degree of any of the bundlesLi is positive it is the associated section
βi which is non-zero. In this case, there is also a symplectic form analogous to that for the
αi available and the expectations are the same withK1/2 ⊗ Li replaced byK1/2 ⊗ L−1

i .

While it is quite encouraging that one of the rank 2 equations is indeed a moment map
for the gauge symmetry the question of what the right notion of stability is, in this context, is
still open. In the rank 1 case, one can prove that indeed dividing through by the complexified
gauge group is equivalent to setting the moment map to zero and dividing out by the usual
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gauge transformations. This is the content of Lemma 7.2.4 of[12]. So, in the case of the
rank 1 SW equations, it is enough to have a holomorphic section of a holomorphic line
bundle to solve both of the remaining SW equations. The proof of this statement, given
in [12], uses a highly non-trivial result in analysis due to Kazdan and Warner[10]. Infact,
the use of the Kazdan–Warner result in this context is origially due to Bradlow[3]. To
give an analogous proof for the rank 2 equations would require a solution to a system of
Kazdan–Warner type equations. Unfortunately, we do not know of a solution to such a
system.

Since that result does not easily generalize we provide a weaker form of the statement
available for the rank 1 equations which does generalize to the rank 2 setting. The alternative
does not rely on the work of Kazdan–Warner for rank 1 which means that we are free to
use the Kazdan–Warner theorem in rank 2.

The idea is to show that there are solutions to the SW equations for a metric in the
conformal class of the K̈ahler metric. This only requires usual Hodge theory.

Proposition 7.3. Let (ω,X) be a Kähler manifold and (e2ρω,X) be X equipped with a metric
conformal to the Kähler metric, with ρ : X → R. Suppose that the degree of a holomorphic
line bundle L⊗2 is negative and that B0 is a hermitian holomorphic connection on L⊗2.
Suppose, also that α is a non-zero holomorphic section ofK1/2 ⊗ L. Then, for a particular
conformal factor ρ (up to scalars) there exists another hermitian structure h on L⊗2 such
that for the connection B, which is hermitian with respect to h = (expρ) · h0 and which
defines the same holomorphic structure on L⊗2 as B0, that

ω ∧ FB = e−ρ |α|2h ω2 = |α|2ω2.

Proof. The change in hermitian structure relates the curvatures by

FB = FB0 − i∂̄∂ρ

so the equation that needs to be solved is

ω ∧ FB0 − iω ∧ ∂̄∂ρ = |α|2ω ∧ ω.

However,

iω ∧ ∂̄∂ρ = �ρω ∧ ω

so that we want a solution to

�ρ + |α|2 + C = 0,

whereC ∧ ω2 = −ω ∧ FB0. This last equation has a unique solution up to the addition of
a constant. �
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Remark 7.4. Since we only make use of Hodge theory the proposition could equally well
have been stated withf any positive semi-definite function replacing the square of the norm
of the holomorphic section|α|2.

Proposition 7.5. Suppose that the moduli space of SW equations on (ω,X) is zero dimen-
sional. Then, given a holomorphic section one obtains a solution to the rank 1 SW equations
on (ω,X).

Proof. In the present setting the moduli space is a set of points and by the compactness of
the space it must be a finite set, let them be denoted bypa. The idea of the proof is that we
can obtain each of these points as solutions to the SW equations on (e2ρaω,X), respectively.
By Proposition 2.3, the section that solves the SW equations on (e2ρω,X) can as well be
taken to be the holomorphic section on (ω,X). By Proposition 7.3given a holomorphic
section ofK1/2 ⊗ L we obtain a connectionB on the holomorphic bundleL⊗2 such that
ω ∧ FB = e−ρ |α|2h with ρ determined by the section. ByProposition 2.3, we have thus a
solution to the SW equations on (eρω,X). By Proposition 5.5, the solution space (of the
perturbed equations) is independent of the metric and so since we have a solution to the
equations on (eρω,X) this must be continuously connected to a solution on (ω,X) in the
space of connections and sections.�

Remark 7.6. This result is much weaker than Lemma 7.2.4 in[12]. Running through all
possible holomorphic sections on (ω,X) we get a list of solutions on various Riemannian
manifolds all conformally equivalent to the Kähler manifold (ω,X). All of these points
must be points in the moduli space, since they solve the SW equations on the appropriate
Riemannian manifold. However, we have no way of knowing if they are distinct. It could
happen that one holomorphic sectionα1 gives us a solution on (eρ1ω,X) and another
holomorphic sectionα2 yields a solution on (eρ2ω,X) and these points are continuously
connected in the parametrized space of connections and sections. Of course, the lemma just
cited tells us that this does not happen in the rank1 case.

We need a version of Lemma 7.2.4 of[12].

Proposition 7.7. Suppose that the degree of a line bundle L is negative and that B is a
hermitian holomorphic connection on L. Let f be any positive semi-definite function. Then,
there exists another hermitian structure h′ on L such that for the connection B′ which is
hermitian with respect to h′ = (expλ) · h and which defines the same holomorphic structure
on L as B and, furthermore,

F
(1,1)
B′ = (expλ) · f · ω

Proof. The curvatures are related by

FB′ = FB − i∂̄∂λ
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so the equation that needs to be solved is

ω ∧ FB − iω ∧ ∂̄∂λ = expλ · f · ω ∧ ω.

However,

iω ∧ ∂̄∂λ = �λω ∧ ω

and the equation that needs to be solved is

�λ+ expλ · f + C = 0, (7.7)

whereCω ∧ ω = −FB ∧ ω andC is negative since the degree ofL is. This equation is
shown to have a unique solution forλ : X → R in [10] as quoted in[12]. �

We can now show that there are solutions to the rank 2 equations.

Proposition 7.8. Let (ω,X) be a Kähler manifold and (e2ρω,X) be X equipped with a metric
conformal to the Kähler metric, with ρ : X → R. LetLi be two holomorphic line bundles on
X and suppose that deg (Li) < 0 for i = 1,2.Let B0

i be Hermitian holomorphic connections

on the Li and that αi are non-zero holomorphic sections of K1/2
X ⊗ Li. For a particular

conformal factor ρ and particular hermitian structures hi on the same holomorphic bundles
Li there are hermitian connections Bi for which

ω ∧ FBi = e−ρ |αi|2hi ω2

Proof. The equations, generalizing those inProposition 7.3, that have to be solved are

∑
j

D−1
ij (FA0

j
−�λj ω) ∧ ω = exp


−ρ +

∑
j

Eijλj


 · |αi|2ω2

or ∑
j

Hij �µj + exp (−ρ + µi) · |αi|2 + Ci = 0, (7.8)

with G = ET ·H · E, µi =∑j Eijλj andCi ∧ ω2 = −∑j D
−1
ij FA0

j
∧ ω. SinceH is a

positive definite matrix not both ofH11 andH22 can be zero. Suppose, it isH11 that is not
zero (otherwise repeat the following with the obvious exchanges). Setρ = µ1 then

µ1 = − 1

H11

(
H12µ2 + 1

∆

(
|α1|2 + C1

))
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solves thei = 1 part of(7.8). Suppose thatH12 �= −H11, then thei = 2 part of(7.8)agrees
with (7.7)with the following identifications:

λ =
(

1 + H12
H11

)
µ2,

C = H11 +H12

detH

(
C2 − H21

H11

(
|α1|2 + C1

))
,

f = H11 +H12

detH
|α2|2 e(1/H11) (1/∆)(|α1|2+C1)

If, on the other hand,H12 = −H11 then the equation to solve is simply

detH

H11
�µ2 + g = 0,

whereg is independent ofµ2, and, by Hodge theory, this has a solution.�

Remark 7.9. It is not clear why the choicesH12 = −H11 or H12 = −H22 have such a
privileged position. On the other hand ifH is diagonal then one is dealing with two copies
of the rank 1 SW equations.

When one bundle, sayL1, is holomorphic and the other,L2, is anti-holomorphic the
same arguments go through:

Proposition 7.10. Let (ω,X) be a Kähler manifold and (e2ρω,X) be X equipped with
a metric conformal to the Kähler metric, with ρ : X → R. Let Li be a holomorphic line
bundle and Lj be an anti-holomorphic line bundle on X and suppose that deg (Li) < 0,
and deg (Lj) > 0. Let B0

i and −B0
j be Hermitian holomorphic connections on the lines

Li and L−1
j , respectively. αi is a non-zero holomorphic section of K1/2

X ⊗ Li and βj is

a non-zero holomorphic section of K1/2
X ⊗ L−1

j . For a particular conformal factor ρ and
particular hermitian structures hi and hj on the same holomorphic bundlesLi andLj there
are hermitian connections Bi and −Bj for which

ω ∧ FBi = e−ρ |αi|2hi ω2, ω ∧ F−Bj = e−ρ |βj|2hj ω2.

What we have seen is that given a pair of holomorphic sections toK1/2 ⊗ Li on the K̈ahler
manifold (ω,X) we are guaranteed a solution to the rank 2 SW equations on (eρω,X).

Now we come to perturbations. There are two types of perturbation adopted in the
literature. The first, introduced by Witten, is to takeh ∈ H(2,0)(X) ⊕ H(0,2)(X) which is
geared to K̈ahler manifolds withb+

2 (X) > 1. The second option is that of Taubes[16]
which is to seth = rω. Such a perturbation is available in the more general setting of
almost K̈ahler manifolds, i.e. on symplectic manifolds with a compatible almost complex
structure. We adopt Witten’s perturbation.

We have the following:
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Proposition 7.11. Let X be a minimal surface of general type. Then, for any Kähler metric
the basic classes of the rank 2 SW equations are a subset of the Cartesian product of the
allowed rank 1 SW classes, i.e. subsets of the four classes (±KX,±KX). If ∃ Li such that
Li = ±KX then there are non-zero basic classes.

Proof. We follow Witten’s argument, footnote 11 on page of[17]. The perturbed equations
require that the canonical bundle can be expressed asKX = O(Σ1) ⊗O(Σ2) andKX =
O(Σ3) ⊗O(Σ4) however, Lemma 4 of Kodaira[14] tells us that if theΣi are non-zero
effective divisors thenΣ1 ·Σ2 > 0 andΣ3 ·Σ4 > 0. Denote the divisors ofLi by [Di] and
Σ̄ = (Σ1 −Σ2,Σ3 −Σ4)T. Then, we havēΣ = 2E · [D] and

Σ̄T · Σ̄ = 4Cij[Di] · [Di].

The dimension formula gives us

4d = Σ̄T · Σ̄ − 2K2
X,

however, 2K2
X = (Σ1 +Σ2)2 + (Σ3 +Σ4)2 so that we have

d = −Σ1 ·Σ2 −Σ3 ·Σ4.

If theΣi are all non-zero then the lemma quoted above implies that the dimension is negative
and so we have an empty moduli space. The same lemma tells us that the dimension cannot
be greater than zero. The zero dimensional (and non-empty) moduli space requires that
Σ1 ·Σ2 = 0 andΣ3 ·Σ4 = 0. This gives the four possibilities stated in the proposition.

Since there is precisely one section associated with each choice we have, byProposition
7.8, that there is indeed a solution to the rank 2 equations if∃ Li such thatLi = ±KX. �
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